Несколько десятков лет назад компьютеры резко подешевели и стали доступны для широкой аудитории, что произвело революцию как во многих отраслях науки, бизнеса и промышленности, так и в нашей повседневной жизни. С помощью компьютеров можно работать с огромными базами данных, автоматизировать бизнес-процессы, контролировать работу конвейера на производстве, упрощать управление самолетом или просто хранить коллекцию семейных фотографий.
Сегодня такая же революция происходит с данными. За несколько десятков лет многие отрасли и компании накопили большие объемы данных, и теперь появилась возможность извлекать пользу из этих данных, находить в них нетривиальные закономерности. Методы машинного обучения и анализа данных всё активнее используются при оптимизации производственных процессов и маршрутов транспорта, для оптимизации закупок и маркетинговых кампаний в интернет-коммерции, для создания новых лекарств и автомобилей без водителя — этот список приложений становится больше с каждым днем. Рынок анализа данных уже оценивается в 50 миллиардов долларов, и он продолжает свой стремительный рост.
Специалист по анализу данных, или Data Scientist — одна из самых востребованных и привлекательных профессий нашего времени. Такие люди нужны практически везде, спрос на них огромен и только растет с каждым годом.
Становится понятно, что недостаточно наличия специалистов по анализу данных — базовые навыки важны для профессионалов из многих областей бизнеса и науки. Методы анализа данных и машинного обучения находят свое применени в социальных науках, экономике, физике, журналистике, лингвистике и даже в исторических науках. Понимание методов и возможностей машинного обучения важно для менеджеров и управленцев, которым, вполне возможно, придется столкнуться с необходимостью внедрения или разработки систем анализа данных.
Наш майнор покрывает все основные разделы анализа данных, необходимые для успешного его применения на практике. Мы начинаем с самых основ — программирования и базовых разделов математики — и переходим к современным методам машинного обучения и их использованию для решения важных прикладных задач.
Курсы майнора:
- Введение в программирование.
- Введение в анализ данных.
- Современные методы машинного обучения.
- Прикладные задачи анализа данных.
Трудоемкость: 20 кредитов
Ограничения для выбора образовательным программам: Прикладная математика и информатика
Статус: запись с 14 марта 2017 года
Минимальное число слушателей: 60
Максимальное число слушателей: 100
Годы реализации: 2017 — 2019
Целевая аудитория: студенты 2016 года набора
Планируемое место проведения: